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When a digital phase-locked loop with a long loop update time tracks a signal with
high doppler, the demodulation losses due to frequency mismatch can become very
significant. One way of reducing these doppler-related losses is to compensate for the
doppler effect using some kind of frequency-rate estimator. The performance of the
fixed-window least-squares estimator and the Kalman filter is investigated, several doppler
compensating techniques are proposed. It is shown that the variance of the frequency
estimator can be made as small as desired, and with this, the doppler effect can be effec-
tively compensated. The remaining demodulation losses due to phase jitter in the loop

can be less than 0.1 dB.

l. Introduction

Figure 1 depicts the major components of a digital phase-
locked loop (DPLL) used in tracking low signal-to-noise
ratio (SNR) signals. The integrate-and-dump circuit integrates
the phase error at the output of the phase detector producing
the so-called error signal. At the loop update instants, this
error signal is sampled, filtered, and used to set the frequency
of the digitally controlled oscillator (DCO) to its new value.
So, the continuously changing frequency of the tracked signal
is followed by the DCO in a staircase fashion.

In selecting the optimum loop update time, T, one encoun-
ters two conflicting effects. On the one hand, the phase
jitter in the loop decreases in proportion to 1/T. On the other
hand, the static phase error due to frequency mismatch
increases in proportion to T. During high doppler rates, the

demodulation losses due to the static phase error may be very
significant. Figure 10! illustrates our point.

At the Deep Space Network (DSN) stations, the static
phase error of an analog PLL is reduced by ramping the
voltage-controlled oscillator (VCO) using a predicted trajec-
tory file and the Programmed Oscillator Control Assembly
(POCA). A similar technique of ramping the DCQ’s frequency
to reduce the phase error due to doppler rate in a DPLL is
considered in this analysis. However, no predicted trajectory
files to do this DCO ramping will be assumed in this article.
Instead, techniques of estimating the frequency of the tracked
signal using linear estimators is investigated.

IFrom Simon, M., and A. Mileant, “DSA’s Subcarrier Demodulation
Losses,” IOM 3395-85-55. Jet Propulsion Laboratory, Pasadena,
Calif,, March 1985. (JPL Internal document.)
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In Sections II and III, the equations and performance of
two linear estimators are derived, namely, of the “fixed-
window” least-squares estimator and the Kalman filter. In
Section V, several possible implementations of the combined
estimator/DPLL demodulator are compared. It is shown that
the incorporation of an estimator in the carrier/subcarrier
demodulation process can virtually eliminate the doppler-
related demodulation losses, Finally, in Appendix A, the
transfer functions for the estimators are given for future
reference.

ll. Fixed-Window Least-Squares Estimator

Because of the Doppler effect, the instantaneous frequency
x(¢) tracked by a DPLL is a time-varying function, which in
the Taylor series expansion is of the form

x(t) = x +x,(t-T)+x, (t_Tr)2/2+... 1)

where T, is some arbitrary reference time. In this analysis, it
will be assumed that only the first fwo parameters, ie., the
frequency at time 7, x,, and the frequency rate x,, have
significant value and need to be estimated from the available
data.

At the loop update instants #,, the loop produces ¥ (%),
which is the estimate of x (k), at the DCO’s output.? Since the
DCO does not have any offsets or frequency drifts, there is a
one-to-one relation between the DCO’s input, y(k), and its
output, x(k); i.e., x (k) = cy (k), where ¢ is a constant denoting
the DCO gain. Without loss of generality, from now on we will
assume that ¢ = 1, so that x(k) = y(k). Using M frequency
samples, we want to estimate x,, the frequency at time T,
and x,, the frequency rate in the time interval T, < tSMT +
T.

At time instants £, = kT we obtain the DCO’s frequency
sample, ¥ (k), which is assumed to be of the following mathe-
matical form (see Fig. 2):

y&) = x tx, (4 -T)+vk) )]
Here v (k) is the noise due to the phase jitter in the DPLL. It
is modeled as a Gaussian random variable with zero mean and

variance o;. T is the loop update time andk=1,2, M.

Given M noisy freqﬁehcy samples, y(k), x, and x, can be
estimated using the following least-squares algorithm (Ref. 1):

x = HTH)' HTy 3)

2For convenience, we shall denote sampled values of a process x (f)
by x (k) rather than x ().
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where x is a two-dimensional estimation vector defined as

%= 4)

y is an M-dimensional data vector

[y ]
y(2)
y= | 5)
yM-1)
L@

and H is an MX2 observation matrix, which by inspection
of Eq. (2), is

HT = )
(T-T) QT-T)....... MT-T)

Using Eq. (6), it can be shown that

12

HH! s ——————
TMM-1)M+1)

T°M+1)(2M+1 TM+ 1
[Tf—T,T(M+1)+ ( +6)( + )] 7- (2+)

TM+1)
7, gt

M

The above equation simplifies considerably when the reference
time 7, is set to zero (equivalent to reducing the Taylor series
of Eq. (1) to a Maclaurin series). In this case, the above equa-
tion becomes

[ (M +1) =3
T
®THY! = _ 2 (8)
- MM-1)
=3 _6
T e+

With 7, = 0 and inserting Eqs. (5), (6), and (8) into Eq. (3),
%, and X, are computed as follows



5?1 )
X\ .| T M@r-D
2 .
B s .
@M+1) = |13 v
k=1
X (9)
M
3 6
= 2T Y Gk
i T T2(M + 1) ,?5 r &)

It ean be shown that bothx andx are unbigsed estimates of

X andx , respectively.

The covariance matrix of the error in the estimator, accord-
ing to Ref. 1, because of the independence of the noise sam-
ples »(k), is

Py Pia 2 T ere
E[eeT] AP = = o} (H'H) o)
Py Py

where the error vector e is defined as
e A (11)

(HTH)™! is given by Eq. (7) or Eq. (8) and o is the variance
of the DCO’s frequency samples.

Observing Eq. (8), we see that for large M, the error vari-
ance for x, is proportional to 1/M whereas for x, the error
variance is proport10nal to 1/M>. This implies that the uncer-
tainty in the estimate of %, diminishes much more rapidly
than for x, .

Using the estimates J?l and X, the frequency estimate at
time t willbe

CR@) =R +@-T)R, (12)
with expected value

E[x@®)] = x +(¢-T)x, (13)

and variance

var [£()] A o2 ()
=p, *t20- Tr)pm - Tr)2 Pso

2 6(t-T)

= —i -
R e R
14

Note that the variance of the estimated frequency, UZ ®,
is a parabola with miniinum value at time

= T(M+1)2+T, (15)

which lies in the midpoint of the data stream. The above equa-
tions (12) through (14) are true for prediction (z > MT + T,)
as well as for smoothing (+ <MT + T,,).

Let v be defined as the ratio of the variance of the fre-
quency estimator to the variance of the frequency samples,
ie.,

o2 (#)

v A (16)

2
g
Y

and again without loss of generality let T, = 0. Then it can be
shown that

1 4M+2
— Ky L et
MSTS MO 2 Ve a7

for TM+1)2<t<TWM+1).

The above equation says that our estimator will have
minimum variance ¢2/M when smoothing is performed in the
middle of the data stream. On the other hand, if we want to
use the estimator as a predictor T seconds ahead of the most
recent data point, then the variance of the estimator will be
Von where v, . will be equal to the upper bound of
Eq (17"5 To improve demodulation, we want the variance
of the predictor to be less then the variance of the samples;
i.e., we want vy < 1. This sets the lower bound on the -
number of samples needed for computation of x(z), namely,
M = 6. Of course, the larger M is, the lower will be the error
variance with the penalty of bigger computational burden.

In the proposed implementation of the least-squares algor-
ithm, each time a new frequency sample becomes available,
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the oldest sample is discarded. This can be accomplished with

a shift register as shown in Fig. 3. In this implementation, in
each loop update period the tracked frequency and frequency
rate are estimated from the M last frequency samples. Hence

the name “fixed-window”’estimator.

In this section, the performance of a second-order Kalman
filter for estimating the frequency and the frequency rate is
investigated. The Kalman filter belongs to the class of recur-
sive linear estimators. We begin by making several definitions.
Let x(k) be the two-dimensional state vector defined in
Eq. (4). Then, in accordance with our previous discussion, the
state-space equations describing the evolution of our system
from time #, to time 7, will be (see Fig. 4)

x(k+1) = Fx(k) + w(k) (18)

y(k) = Hx(k)+v(k) (19)
where F is a 2 X 2 state transition matrix given by

o
F = (20)
0 1

and His a 1 X 2 observation matrix given ov
H = [10] (21)
and is different from H defined previously. y (k) is again the

frequency noisy sample. w(k) is modeled as a stationary white
noise process with covariance matrix

12
Q = £ [wi)w(x)'] = (22)

q21 q22

which takes into account the unmodeled disturbances in the
system e.g., the higher order terms in Eq. (1). v(k) is the same
as before. Note that F, H, and Q are assumed to be time-
invariant.

The operation of the Kalman filter is given in terms of the
error covariance matrix P and the gain matrix K. Referring
to the time diagram of Fig. 5, the equations describing the
operation of the filter at the instant when the measurement
(k) becomes available are (Ref. 2):
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State Estimate Update
X (k) = x,(k)+K(K) [y (k) - Hx ,(%)] (23)

Error Covariance Update

PAk) = [I-K(OH]P (k) (24)
Kalman Gain Update
Kk) = Pp(k)HT [HPp(k)HT - o; 1!
k, (k)
= (25)
k, (k)

where the subscript p stands for predicted or extrapolated
values and the subscript f denotes filtered or updated values.
The corresponding extrapolation or prediction equations are

State Estimate Extrapolation
xp(k) = Fxf(k -1 (26)
Error Covariance Extrapolation
P, (k) = FPf(k-l)FT+Q (27)

To assess the performance of the Kalman filter, we need
to know the steady-state value of the error covariance matrix
P in terms of Q and o2, It turns out that the closed form solu-
tion of the steady-state matrix P (and K) is quite difficult to
derive given an arbitrary Q matrix, even for a second-order
system. We will use the results of Ref.3 where the steady-
state covariance and gain matrices are derived for Q of the
following form

91 %2 T*/3 12
- = 22
Q= = o, T (28)
91 9y T2 1

In our analysis we will treat 0% as a constant which we can
set to some desired value. Rewriting Eqs. (12) through (18)
of Ref. 3, the elements of the steady-state filtered covariance
matrix are obtained, namely,




'o’j [2a+2\/o—z\/oe+r2 -8Jo+7? —8/3]/r2
P, = Py =02 4lVat i - el (29)
= 802 [Va-1]/ay

S
]

™
>
XS
|

where

P2 A 1662 /(o2T*) (30)

and

o= 4/3+2r* +1/3 (31)

When the Kalman filter is used to estimate ¥(¢) in the time
interval ¢, <t <¢ + 7T (for ‘real-time’ demodulation), the
variance of this estimator will be (analogous to Eq. (14))

02 (f) = p,, +2tp, + Dy, O<i<T  (32)

Inserting Eq. (29) into Eq. (32) with ¢ = T and simplifying,
we obtain the maximum value of the variance of our estimated
frequency, namely,

| Ko2=al[2r2veTral - 1603]17 (33)

Defining again 7y as the ratio of the input to output vari-
ances of the estimator, i.e., v = 05/02, the curve of v versus
r? is obtained and shown in Fig. 6. Igrom that figure we see
that v <1 for #* > 300. Since 72 is a scaled version of the
ratio of the measurement variance, o2 to o2, the upper bound

for choosing the latter should be (from Eq. (30))

03 < 16a;/(300T4) (34)

The lower bound for ¢2 is determined by the unaccounted
dynamics of the tracked signal such as the frequency accelera-
tion. In estimating x(k), the matrix Q has the effect of “wash-
ing out” the old data: the larger Q is, the less effect the old
measurements will have against new ones. Conversely, small
Q makes the estimate insensitive to new measurements. This
is undesirable when significant signal dynamics are expected.
The Q matrix also determines the size of the error in the
estimator (see Eq. (27): the larger Q is, the larger P will be.
The optimum set of values for Q has to be determined pos-
sibly by simulation.

Figure 6 also shows curves of the elements of the steady-
state gain matrix, k, and k, vs r2. These gains are related to
P, andp,, as follows:

2
ky = P19,
(35)

- 2
ky, = py,l0)

where p, | and p, , are given by Eq. (29).

IV. Some Comparisons Between the
Two Estimators

Both estimators, the least-squares and the Kalman filter,
belong to the class of minimum-variance, unbiased, linear

" estimators. The first one represents a “batch-type” approach;
p pe” app

the second, a recursive.

On each cycle (loop update period), the least-squares algor-
ithm requires approximately 2 summations and M + 3
multiplications, while the Kalman filter requires approximately
19 summations and 16 multiplications.

The comparison of the error variance for the two estimators
is not that obvious. In the least-squares algorithm, the variance
depends on M — the number of samples considered. In the
Kalman filter, the variance depends on our specification of the
Q matrix, which can be arbitrarily selected depending on how
fast we want the filter to follow the new data.

The Kalman filter seems to be a more elegant approach to
the estimation problem. However, the least-squares algorithm
does not have the instability and divergence problems of the
P matrix of the Kalman filter.

V. Signal Demodulation Using Frequency
Rate Compensation

There are many ways in which frequency estimators can
be combined with a DPLL or can become part of a DPLL in
order to improve the demodulation process of a doppler
distorted signal. We will compare here three implementations
which we shall call the “Parallel” the “Serial” and the “Single
Loop” Estimator-Added Demodulators.

The concept of a Parallel Estimator-Added Demodulator
is represented in Fig. 7. It consists of M DPLLs and (M - 1)
delays. Each subsequent loop tracks the signal delayed by T
seconds relative to the previous loop. At the loop update
instants, the noisy frequency samples of the M DCOs are fed
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into the computing device that estimates ¥, and ¥, and from
them X(7). Finally, ¥(¢) drives the DCO, which performs
the actual demodulation. In this implementation, demodula-
tion is accomplished with an ‘open-loop receiver’. Fine tuning
of the phase can be done with an epoch-tracking loop, which
is shown with dotted lines. This *‘paralle]” demodulation
scheme works only with the least-squares algorithm discussed
in Section II. This implementation requires the minimum
number of components (DPLLs and delays) when the demodu-
lated signal comes from the middle delay where the variance
of the estimator has its minimum value. Four DPLLs with
three delays should be sufficient to give an X(¢) with small
variance.

The same demodulation results can be obtained in a more
economical way with the Serial Estimator-Added Demodu-
lator, which is shown in Fig. 8. Here the noisy frequency sam-
ples, y(k), are obtained from a single DPLL. These samples
can be fed either into the least-squares estimator or the Kalman
filter where the estimated frequency x(#) is computed. The
final demodulation process is identical to the one described
previously, i.e., it can be performed with an open-loop receiver

" or with the aid of an epoch-tracking loop.

Finally, in Fig. 9, the DPLL with a Frequency Rate Com-
pensator concept is depicted. At loop update instants, the
y(k) samples are fed into either the least-squares estimator
or the Kalman filter where the frequency rate x, (k) is esti-
mated. Then 5c‘2(k) is used to ramp the DCO between the loop
update instants. This compensates for the doppler effect and
reduces the loop phase error due to frequency mismatch.,
Since, in this implementation, the frequency rate estimator
becomes part of the DPLL, the loop filter has to compensate
for the poles of the estimator. Appendix A gives the transfer
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functions for the least-squares estimator and the Kalman
filter and Figs. 11 and 12 show in a block diagram the interac-
tion of the DPLL components with a second order estimator.
However, this is done here only for future reference. A detailed
analysis of a DPLL enhanced with a frequency-rate estimator
will be treated in a subsequent article.

Comparing the above three schemes, we observe that the
“parallel” implementation is the least economical from the
standpoint of the number of components. From the stand-
point of reducing the phase error in the loop, they all appear
to be equal.

VI. Conclusion

When a DPLL with a long loop update time tracks a signal
with high doppler, the losses due to frequency mismatch can
become very significant. One way of reducing these doppler-
related losses is to compensate for the frequency rate using
some kind of estimator. It was shown that the variance of the
estimator can be made as small as desired. In other words,
the doppler effect can be effectively compensated. The remain-
ing demodulation losses due to phase jitter in the loop will be
less than 0.1 dB, as is illustrated in Fig. 10.

In Sections II and III, the performances of the fixed-
window least-squares estimator and the Kalman filter are
investigated. They both belong to the class of minimum-
variance linear estimators. The least-squares is a batch-type
algorithm, whereas the Kalman filter uses a recursive algo-
rithm. Appendix A gives the transfer functions of these
estimators for future reference. In Section V, several possible
doppler compensating techniques are proposed,
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Appendix A

Transfer Functions for the Fixed-Window Least Squares Estimator
and the Kalman Filter

The fixed-window least squares algorithm requires - the
sums

M M
S, =Y.k and S, =TQ ky(k)  (AD)

i=1 =1

Defining z~! as the delay operator, i.e.,y(k)z™! =y(k - 1), we
can write the above sums as follows

M-1 M-1
S, =y0n Y, ' and S, = Y@M Y, M-z
=0 i=0
(A2)
Performing the above summations, we get
s a0 M-
= y —
! M1 (z-1)
and
MM LM 1)+ 1
s, = yan M2 MU*1)
Mtz -1)?
(A3)

Taking the z-transform of the above expressions we obtain

M

S = Y@ ————
@) (2) TSN
and

MMM+ 1)+ 1
M1 (z-1)2

8,@) = TY()

(A4)

Combining Eq. (9) with the above equations, we finally obtain
the desired transfer function for the fixed-window least
squares estimator, namely,
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e

RGO % &y = m@r-D

@M+1)EM-1)  3@M M@+ 1)
M1 (z-1) M-t (z-1)?

and

A )?2(2) ~ 5
ROA 35 ~mar-D

3" -1)

) . 601 oMM+ 1)
M1 (z-1)

TM+ 1)1 (z-1)2

(A5)

To obtain the transfer function of the Kalman filter, we
insert Egs. (26), (20), and (21) into Eq. (23) and obtain

%, () 1 T||%&-1)
%,() 0 1{{%k-1)
1 TR -1 ] |k &
+{y@E)-11 0]
0 1||%&-1) k, (k)
(A6)

In steady-state, k; (k) = k1 and k,(k) = k,. Taking now the
z-transform of the above equation and recombining terms, we

" obtain

X@-271-k) = X,e) T2 (1-k) +k Y @)
(A7)
X,@ -2 (1-5,T) = X, @) k2! +k,Y ()

Writing the above equation in matrix form and performing
matrix inversion, we finally obtain the transfer function for
the Kalman filter, namely,



R (@)

R, ()

z(zk, +k,T-k,)

22 +z(2+k +E,D+ (1K)

X )
Y(z)

zk,(z - 1)

22 +z(-2+k +k,T)+(1-k)

(A8)

The above transfer functions are needed when the least-
squares estimator or the Kalman filter becomes part of a digital
phase-locked loop (DPLL). For future reference, Fig. 11
shows the building blocks of a DPLL with the frequency and
frequency-rate estimator incorporated in the loop. This block
diagram is in the hybrid s/z transform domain. Figure 12
shows the corresponding z-domain block diagram, which is
obtained from Fig. 11 using techniques of Ref. 4. In Figs. 11
and 12, zero computation time was assumed. Using techniques
of Ref. 4, the loop filter £(z) can be designed so that the
estimator-enhanced DPLL will have optimum stability and
bandwidth characteristics. All of these will be the subject of
a future analysis.
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